The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2
نویسندگان
چکیده
Cyclooxygenase-2 (COX-2) is overexpressed in a variety of human epithelial cancers, including lung cancer, and is highly associated with a poor prognosis and a low survival rate. Understanding how COX-2 is regulated in response to carcinogens will offer insight into designing anti-cancer strategies and preventing cancer development. Here, we analyzed COX-2 expression in several human lung cancer cell lines and found that COX-2 expression was absent in the H719 and H460 cell lines by a DNA methylation-independent mechanism. The re-expression of COX-2 was observed after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment in both cell lines. Further investigation found that H3K36 dimethylation was significantly reduced near the COX-2 promoter because histone demethylase 2A (KDM2A) was recruited to the COX-2 promoter after TPA treatment. In addition, the transcription factor c-Fos was found to be required to recruit KDM2A to the COX-2 promoter for reactivation of COX-2 in response to TPA treatment in both the H719 and H460 cell lines. Together, our data reveal a novel mechanism by which the carcinogen TPA activates COX-2 expression by regulating H3K36 dimethylation near the COX-2 promoter.
منابع مشابه
Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach
Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...
متن کاملP-202: Reduced Expression of JMJD1A Histone Demethylase Gene in Testis Tissues of Infertile Men Referred to Royan Institute
Background: Epigenetic modifications are involved in different cellular processes through regulating chromatin dynamics. histone methylation is an important modification that can be dynamically regulated by histone methyltransferase and histone demethylase enzymes. JMJD1A (also known as JHDM2A and KDM3A) is a histone demethylase specific for H3K9me2/me1. JMJD1A is a key epigenetic regulator tha...
متن کاملSpecific Phosphorylation of Histone Demethylase KDM3A Determines Target Gene Expression in Response to Heat Shock
Histone lysine (K) residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs) counteract the activity of methyl-transf...
متن کاملInhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes.
Epigenetic chromatin modification is a major regulator of eukaryotic gene expression, and aberrant epigenetic silencing of gene expression contributes to tumorigenesis. Histone modifications include acetylation, phosphorylation, and methylation, resulting in a combination of histone marks known collectively as the histone code. The chromatin marks at a given promoter determine, in part, whether...
متن کاملThe histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis.
Histone chaperones affect chromatin structure and gene expression through interaction with histones and RNA polymerase II (PolII). Here, we report that the histone chaperone Spt6 counteracts H3K27me3, an epigenetic mark deposited by the Polycomb Repressive Complex 2 (PRC2) and associated with transcriptional repression. By regulating proper engagement and function of the H3K27 demethylase KDM6A...
متن کامل